STATISTICAL CONVERGENCE IN A BICOMPLEX VALUED METRIC SPACE

نویسندگان

چکیده

In this paper, we study some basic properties of bicomplex numbers. We introduce two different types partial order relations on numbers, discuss valued metric spaces with respect to orders, and compare them. also define a hyperbolic space, the density natural statistical convergence, Cauchy property sequence numbers investigate in space prove that is complete if only complex are complete.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wijsman structure of a quantale-valued metric space

We define and study a quantale-valued Wijsman structure on the hyperspace of all non-empty closed sets of a quantale-valued metric space. We show its admissibility and that the metrical coreflection coincides with the quantale-valued Hausdorff metric and that, for a metric space, the topological coreflection coincides with the classical Wijsman topology. We further define an index of compactnes...

متن کامل

Metric on a Statistical Space - Time

We introduce a concept of distance for a space-time where the notion of point is replaced by the notion of physical states e.g. probability distributions. We apply ideas of information theory and compute the Fisher information matrix on such a space-time. This matrix is the metric on that manifold. We apply these ideas to a simple model and show that the Lorentzian metric can be obtained if we ...

متن کامل

on generalized statistical convergence in random 2-normed space

in this paper, we shall define and study the concept of  -statistical convergence and  -statistical cauchy inrandom 2-normed space. we also introduce the concept of  -statistical completeness which would provide amore general frame work to study the completeness in random 2-normed space. furthermore, we also prove some new results.

متن کامل

A note on convergence in fuzzy metric spaces

The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ural mathematical journal

سال: 2023

ISSN: ['2414-3952']

DOI: https://doi.org/10.15826/umj.2023.1.004